如图,⊙O的直径AB是4,过B点的直线MN是⊙O的切线,D、C是⊙O上的两点,连接AD、BD、CD和BC.(1)求证:∠CBN=∠CDB;(2)若DC是∠ADB的平分线,且∠DAB=15°,求DC的长.

问题描述:

如图,⊙O的直径AB是4,过B点的直线MN是⊙O的切线,D、C是⊙O上的两点,连接AD、BD、CD和BC.

(1)求证:∠CBN=∠CDB;
(2)若DC是∠ADB的平分线,且∠DAB=15°,求DC的长.

(1)证明:∵AB是⊙O的直径,∴∠ADB=∠ADC+∠CDB=90°,∵MN切⊙O于点B,∴∠ABN=∠ABC+∠CBN=90°,∴∠ADC+∠CDB=∠ABC+∠CBN;∵∠ADC=∠ABC,∴∠CBN=∠CDB;(2)如图,连接OD、OC,过点O作OE⊥CD于点E;∵CD...
答案解析:(1)由AB为⊙O的直径,得:∠ADB=90°,根据MN是⊙O的切线,可知:∠AMN=90°,根据同弧所对的圆周角相等,可知:∠ADC=∠ABC,从而证得:∠CBN=∠CDB;
(2)连接OD、OC,过点O作OE⊥CD于点E,根据圆周角定理,可求得∠BOC和∠DOB的度数,故可知:∠COD的度数,在等腰△OCD中,可将CD的长求出.
考试点:圆周角定理;切线的性质.


知识点:本题主要考查圆周角定理及切线的性质.