数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/nSn(n=1,2,3,…).证明: (Ⅰ)数列{Snn}是等比数列; (Ⅱ)Sn+1=4an.
问题描述:
数列{an}的前n项和记为Sn,已知a1=1,an+1=
Sn(n=1,2,3,…).证明:n+2 n
(Ⅰ)数列{
}是等比数列;Sn n
(Ⅱ)Sn+1=4an.
答
(I)证:由a1=1,an+1=
Sn(n=1,2,3,),n+2 n
知a2=
S1=3a1,2+1 1
=S2 2
=2,4a1
2
=1,∴S1 1
=2
S2 2
S1 1
又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn=
Sn(n=1,2,3,),n+2 n
∴nSn+1=2(n+1)Sn,
=2(n=1,2,3,…),
Sn+1 n+1
Sn n
故数列{
}是首项为1,公比为2的等比数列.Sn n
(II)证明:Sn+1=4an.当n=1时,S2=a1+a2=4a1,等式成立.
由(1)知:
=1×2n−1,∴Sn=n2n-1Sn n
当n≥2时,4an=4(Sn-Sn-1)=2n(2n-n+1)=(n+1)2n=Sn+1,等式成立.
因此对于任意正整数n≥1都有Sn+1=4an.