已知数列{an}满足a1=1,an+1=Sn+(n+1)(n∈N*),其中Sn为{an}的前n项和, (1)用an表示an+1; (2)证明数列{an+1}是等比数列; (3)求an和Sn.
问题描述:
已知数列{an}满足a1=1,an+1=Sn+(n+1)(n∈N*),其中Sn为{an}的前n项和,
(1)用an表示an+1;
(2)证明数列{an+1}是等比数列;
(3)求an和Sn.
答
(1)由an+1=Sn+(n+1)①得出n≥2时 an=Sn-1+n ②①-②得出an+1-an=an+1整理an+1=2an+1.(n≥2)由在①中令n=1得出a2=a1+2=3,满足a2=2a1+1所以an+1=2an+1.(n≥1) (2)在an+1=2an+1两边同时加上1得...