y=sin^2x+sinxcosx+3cos^2x的最值
问题描述:
y=sin^2x+sinxcosx+3cos^2x的最值
答
y=(sinx)^2+sinxcosx+3(cosx)^2
=2(cosx)^2+(1/2)sin2x+1
=(1/2)sin2x+cos2x+2
=(√5/2)sin(2x+p)+2
最大值是2+√5/2,最小值是2-√5/2.p是什么?辅助角,cosp=√5/5,sinp=2√5/5