1.sin42-cos12+sin54=_________2.sin40(1+2sin10)=___________3.y=3sin(x+20)+5sin(x+80)的最大值是____
问题描述:
1.sin42-cos12+sin54=_________
2.sin40(1+2sin10)=___________
3.y=3sin(x+20)+5sin(x+80)的最大值是____
答
1.sin42-cos12+sin54=sin42-sin78+sin54
=sin54-sin18=2cos36sin18
=sin72/2cos18=1/2
(用到和差化积和倍角公式,前者不要求掌握)
2.sin40°(1+2sin10°)
=sin40°+2sin10°sin40°
=sin40°+cos30°-cos50°
=sin40°+ √3/2-sin40°= √3/2
3.y=3sin(x+20)+5sin(x+80)
=3sin(x+80-60)+5sin(x+80)
=3sin〖(x+80)-60〗+5sin(x+80)
=3sin(x+80)cos60度-3cos(x+80)sin60+5sin(x+80)
=1.5sin(x+80)-(1.5倍根号3)cos(x+80)+5sin(x+80)
=6.5sin(x+80)-(1.5倍根号3)cos(x+80)
=7sin(x+80+φ)
因为x∈R,所以(x+80度+φ)∈R
所以y的最大值是7
也许有点麻烦,不过高中毕业这些知识就丢得差不多了,应该是正确的,o(∩_∩)o...