求曲线ρ^2=cos2θ所围成图形的面积
问题描述:
求曲线ρ^2=cos2θ所围成图形的面积
答
曲线 ρ^2 = cos2θ 为双纽线,由对称性得所围成图形的面积是
S = 2∫ (1/2)ρ^2dθ = ∫ cos2θdθ
= (1/2)[sin2θ)] = 1.