求y=cos(-x^3)+(sin^2)(x^3)+ln(-x)^3的导函数.
问题描述:
求y=cos(-x^3)+(sin^2)(x^3)+ln(-x)^3的导函数.
答
y'=(cos(x^3)+sin^2(x^3)+3*ln(-x))'
=-sin(x^3)*3*x^2+2*sin(x^3)cos(x^3)*3*x^2-3/x
=3*x^2*sin(x^3)+6*x^2*sin(x^3)cos(x^3)-3/x
答
y'=-sin(-x^3)*(-3x^2)+2sin(x^3) *cos(x^3)*(3x^2)+3/(-x)
=-3x^2sin(x^3)+3x^2sin(2x^3)-3/x