化简1/1×2+1/2×3+1/3×4+……1/n(n+1)

问题描述:

化简1/1×2+1/2×3+1/3×4+……1/n(n+1)

=2/1+3/2+4/3+…………+(n+1)/n
=n+1

原式=1-1/2+1/2-1/3+.....+1/n-1/(1+n)
=1-1/(1+n)

1/1×2+1/2×3+1/3×4+……1/n(n+1)
=1-1/2+1/2-1/3+...+1/(n-1)-1/n+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)