投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n-mi)为实数的概率为 _ .
问题描述:
投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n-mi)为实数的概率为 ___ .
答
由题意知这是一个古典概型,
试验发生包含的事件数是6×6=36,
而满足条件的事件是使得复数(m+ni)(n-mi)为实数,
先计算出复数(m+ni)(n-mi)为实数时n和m的值,
∵复数(m+ni)(n-mi)=2mn-(m2-n2)i为实数
∴m2-n2=0
∴m=n
∴满足条件的事件数是6,
∴复数(m+ni)(n-mi)为实数的概率是
=6 36
,1 6
故答案为:
1 6