已知:如图所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,连接BE,CD,M,N分别为BE,CD的中点,连接AM,AN,MN.(1)求证:BE=CD;(2)求证:△AMN是等腰三角形.
问题描述:
已知:如图所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,连接BE,CD,M,N分别为BE,CD的中点,连接AM,AN,MN.
(1)求证:BE=CD;
(2)求证:△AMN是等腰三角形.
答
证明:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,AB=AC∠BAE=∠CADAE=AD,∴△ABE≌△ACD(SAS),∴BE=CD;(2)∵M、N分别为BE、CD的中点,且BE=CD,∴ME=ND,∵△ABE...
答案解析:(1)由∠BAC=∠DAE,等式左右两边都加上∠CAE,得到一对角相等,再由AB=AC,AF为公共边,利用SAS可得出三角形ABE与三角形ACD全等,由全等三角形的对应边相等可得出BE=CD;
(2)由M与N分别为BE,CD的中点,且BE=CD,可得出ME=ND,由三角形ABE与三角形ACD全等,得到对应边AE=AD,对应角∠AEB=∠ADC,利用SAS可得出三角形AME与三角形AND全等,利用全等三角形的对应边相等可得出AM=AN,即三角形AMN为等腰三角形.
考试点:全等三角形的判定与性质;等腰三角形的判定.
知识点:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.