设3阶矩阵A的特征值为1,2,-1,B=1/4A*+(2A)^-1+A^2+2E,计算矩阵B的特征...
问题描述:
设3阶矩阵A的特征值为1,2,-1,B=1/4A*+(2A)^-1+A^2+2E,计算矩阵B的特征...
设3阶矩阵A的特征值为1,2,-1,B=1/4A*+(2A)^-1+A^2+2E,计算矩阵B的特征值和行列式|B|
答
1、令f(A)=B=1/4A*+(2A)^-1+A^2+2E;2、因为A的特征值为1,2,-1,所以A*的特征值为-2,-1,2,A^-1的特征值为1,1/2,-1,A^2的特征值为1,4,1;3、所以分别用对应A*、A^-1、A^2的特征值代替A*、A^-1、A^2带入F(λ)=1...