已知Sn=2+5n+8n^2+…+(3n-1)n^n-1(n∈N*)求Sn
问题描述:
已知Sn=2+5n+8n^2+…+(3n-1)n^n-1(n∈N*)求Sn
答
Sn=2+5n+8n^2+…+(3n-1)n^n-1
nSn=2n+5n^2+…+(3n-4)n^(n-1)+(3n-1)n^n
Sn-nSn=2+3n+3n^2+…+3n^(n-1)-(3n-1)n^n
n+n^2+……+n^(n-1),n-1项
所以=n*[n^(n-1)-1]/(n-1)=(n^n-n)/(n-1)
所以Sn-nSn=2+3*(n^n-n)/(n-1)-(3n-1)n^n
=2-3*(n^n-n)/(1-n)-(3n-1)n^n
所以Sn=[2-3*(n^n-n)/(1-n)-(3n-1)n^n]/(1-n)