在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的
问题描述:
在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的
(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的$\sqrt{3}$、2倍后得到曲线C2,
答
点(x,y)是曲线x²+y²=1上的点,(x',y')是C2上一点,则:x'=√3xy'=2y得:x=(1/√3)x'y=(1/2)y'因(x,y)在曲线x²+y²=1上,则:[(1/√3)x']²+[(1/2)y']²=1x'²/3+y'²/4=1即变换...