已知数列{an}满足a1=1,an-2an-1-2n-1=0(n∈N*,n≥2).(1)求证:数列{an2n}是等差数列;(2)若数列{an}的前n项和为Sn,求Sn.
问题描述:
已知数列{an}满足a1=1,an-2an-1-2n-1=0(n∈N*,n≥2).
(1)求证:数列{
}是等差数列;an 2n
(2)若数列{an}的前n项和为Sn,求Sn.
答
(1)证明:∵数列{an}满足a1=1, an-2an-1-2n-1=0(n∈N*,n≥2),∴an2n-an-12n-1=12,又a12=12,∴{an2n}是以12为首项,12为公比的等差数列.(2) 由(1)知an2n=12+12(n-1),∴an=n•2n-1,∴Sn=1•20+2•2...