等差数列{an},{bn}的前n项和分别为Sn,Tn,An/Bn=(7n+1)/(4n+27) 求Sn/Tn
问题描述:
等差数列{an},{bn}的前n项和分别为Sn,Tn,An/Bn=(7n+1)/(4n+27) 求Sn/Tn
答
不妨设An=(7n+1)t
Bn=(4n+27)t
则Sn=[3.5n(n+1)+n]t=(3.5n^2+4.5n)t
Tn=[2n(n+1)+27n]t=(2n^2+29n)t
所以Sn/Tn=(7n+9)/(4n+58)
此方法对同类型的题均适用则Sn=[3.5n(n+1)+n]t=(3.5n^2+4.5n)tTn=[2n(n+1)+27n]t=(2n^2+29n)t肿么来的、对{7n}的求和:7(1+2+...+n)=7n(n+1)/2对{1}的求和:1+1+...+1=n两个相加,得3.5n(n+1)+n