1\n(n+3)+1\(n+3)(n+6)+1\(n+6)(n+9)=1\2 n+18 n为正整数,求n的值

问题描述:

1\n(n+3)+1\(n+3)(n+6)+1\(n+6)(n+9)=1\2 n+18 n为正整数,求n的值

裂项相消法
1/3【1/n-1/(n+3)+1/(n+3)-1/(n+6)+1/(n+6)-1/(n+9)】=1/(2n+18)
1/3{1/n-1/(n+9)}==1/(2n+18)
交叉相乘
6n+54=n^2+9n
(n-6)(n+9)=0
所以n=6或-9
祝学习进步不好意思只有n=6n=-9时n+9=0 这个要舍掉\所以n=61/n-1/(n+3)越分不到1/n(n+3)前面乘了1/31/3【1/n-1/(n+3)+1/(n+3)-1/(n+6)+1/(n+6)-1/(n+9)】=1/(2n+18)1/3{1/n-1/(n+9)}==1/(2n+18)值不变吗不变啊1/3*[1/n-1/(n+3)]=1/n(n+3)哦,谢谢怎么交叉的去括号?我会了,谢谢我会了,谢谢1/3{1/n-1/(n+9)}=1/(2n+18)1/3*[9/{n(n+9)}]=1/(2n+18)3/[n(n+9)]=1/(2n+18)n(n+9)=6n+54n^2+3n-54=0(n-6)(n+9)=0把n=-9舍掉 n=6