如图,正方形ABCD中,E是AD边上一点,且BE=CE,BE与对角线AC交于点F,连接DF,交EC于点G. (1)求证:∠ABF=∠ADF; (2)求证:DF⊥EC.

问题描述:

如图,正方形ABCD中,E是AD边上一点,且BE=CE,BE与对角线AC交于点F,连接DF,交EC于点G.
(1)求证:∠ABF=∠ADF;
(2)求证:DF⊥EC.

证明:(1)∵四边形ABCD为正方形,
∠BAC=∠DAC,AB=AD,
又∵AF=AF,
∴△DAF≌△BAF,
∴∠ADF=∠ABF;
(2)Rt△ABE和Rt△CDE中,
BE=CE,AB=CD,
Rt△ABE≌Rt△CDE,
∠AEB=∠DEC,
由(1)知,
∠ABE=∠ADF,
∠ABE+∠AEB=90°,
∠ADF+∠DEC=90°,
∠DGE=180°-90°=90°,
DF⊥EC.