f(x-1)=x+x^2+x^3+.+x^n(x≠0,1),设f(x)中x的系数为Sn,x^3的系数为Tn,

问题描述:

f(x-1)=x+x^2+x^3+.+x^n(x≠0,1),设f(x)中x的系数为Sn,x^3的系数为Tn,
lim(n到∞)(Tn-Sn^2)/(n^4)=

t=x-1,x=t+1
f(t)=(t+1)+(t+1)^2+(t+1)^3+---+(t+1)^n
f(x)=(x+1)+(x+1)^2+(x+1)^3+---+(x+1)^n
f(x)中x的系数为Sn=1+2+3+---+n=n(n+1)/2
f(x)中x^3的系数为Tn=C(3,3)+C(4,3)+C(5,3)+---+C(n,3)=C(n+1,4)=(n+1)n(n-1)(n-2)/4!
Tn-Sn^2=(n+1)n(n-1)(n-2)/4!-(n² +n)² /4=n(n+1)/24*(n² -3n+2-6(n² +n))
=n(n+1)(-5n² --9n+2)/24lim(n到∞)(Tn-Sn^2)/(n^4)=-5/24
作参考吧