数列X1=1/2,X(n+1)=1/(Xn +1) 求通项公式
问题描述:
数列X1=1/2,X(n+1)=1/(Xn +1) 求通项公式
答
X1=1,X2=2/3,X3=3/5,X4=5/8┄┄┄分子、分母同为斐波那契数列,数列通项F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n},分子首项为n=2,分母首项为n=3,X1=1/2,X(n+1)=1/(Xn +1) 求通项公式:Xn ={[(1+√5)/2]^(n+1) -...