已知X(n+1)=(3+4Xn)/(2+Xn),求数列{Xn}的通项公式?应该如何构造新数列?我在参考书上看到的一种解法是根据数列的特征方程构造新数列,什么是 数列的特征方程?
问题描述:
已知X(n+1)=(3+4Xn)/(2+Xn),求数列{Xn}的通项公式?
应该如何构造新数列?
我在参考书上看到的一种解法是根据数列的特征方程构造新数列,什么是 数列的特征方程?
答
楼主,你好!如果你想构造数列的话可以使用待定系数法.就是设两边同时减一个数t,原式就化为
X(n+1)-t=[(4-t)Xn+3-2t]/(2+Xn),然后让等号右边分子和等号左边式子的对应系数相等,解出t=3,所以原式化为X(n+1)-3=(Xn-3)/(2+Xn),然后两边同时取倒数,得到1/[X(n+1)-3]=(2+Xn)/(Xn-3)即1/[X(n+1)-3]=5/(Xn-3)+1,这时再令an=1/(Xn-3),原式化为a(n+1)=5an+1,后面就不写了.
你所说的特征方程构造数列指的应该是不动点法.
若用不动点法,首先把递推公式中的X(n+1)和Xn全部用一个未知数x代替,就构造出了x=(3+4x)/(2+x)这样一个方程,这个方程的解就叫做不动点,解出来这个方程的解释3或-1,有两个不相等的实数不动点,这时就可以构造出一个新的数列bn=(Xn-3)/(Xn+1)是等比数列,先算出b1和b2的值,首项就是b1,公比就是b2/b1,求出bn的通向公式进而求出Xn的通向公式.
对于不动点法,你可以参照这两个网页,有很详细的说明.
http://zhidao.baidu.com/question/148620520.html?fr=qrl&index=0
http://zhidao.baidu.com/question/52906285.html