若x1,x2是关于x的方程x2-(2k+1)x+k2+1=0的两个实数根,且x1,x2都大于1.(1)求实数k的取值范围;(2)若x1x2=12,求k的值.

问题描述:

若x1,x2是关于x的方程x2-(2k+1)x+k2+1=0的两个实数根,且x1,x2都大于1.
(1)求实数k的取值范围;
(2)若

x1
x2
1
2
,求k的值.

(1)∵方程x2-(2k+1)x+k2+1=0的两个根大于1,令f(x)=x2-(2k+1)x+k2+1∴△=4k-3≥0,2k+12>1f(1)>0解得34≤k<1(2)∵x1x2=12,∴2x1=x2,①x1+x2=2k+1,②x1•x2=k2+1     ③把①...
答案解析:(1)由已知中关于x的方程有两个大于1的根,则△≥0,我们构造二次函数f(x),可得f(1)>0,且对称轴在1的右侧,由此构造关于k的不等式组,解不等式组,即可得到k的取值范围.
(2)根据方程的根与系数的关系写出把两根之间的关系写出代入,然后可以得到关于k的方程组,求出k的值.
考试点:一元二次方程的根的分布与系数的关系.
知识点:本题考查一元二次方程的根的分布与系数的关系,其中构造二次函数,利用函数的性质解答本题是整个解答过程的关键.