若关于x的一元二次方程x2+kx+4k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1•x2,则k的值为(  ) A.34 B.-1 C.-1或34 D.不存在

问题描述:

若关于x的一元二次方程x2+kx+4k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1•x2,则k的值为(  )
A.

3
4

B. -1
C. -1或
3
4

D. 不存在

根据题意得x1+x2=-k,x1x2=4k2-3,∵x1+x2=x1•x2,∴-k=4k2-3,即4k2+k-3=0,解得k1=34,k2=-1,当k=34时,原方程变形为x2+34x-34=0,△>0,此方程有两个不相等的实数根;当k=-1时,原方程变形为x2-x+=0,△<0,...