解方程组(x1+2x2+2x3+x4=0,2x1+x2-2x3-2x4=0,x1-x2-4x3-3x4=0)

问题描述:

解方程组(x1+2x2+2x3+x4=0,2x1+x2-2x3-2x4=0,x1-x2-4x3-3x4=0)

方程组的解为: (16,9,-6,0)'+c(15,8,-5,1)'. X1-3X2-2X3-X4=1 (1) 3X1-8X2-4X3-X4=0 (2) -2X1+X2-4X3+2X4=1

不定解

x1+2x2+2x3+x4=0 (1) 2x1+x2-2x3-2x4=0 (2) x1-x2-4x3-3x4=0 (3)(2)-(3)x1+2x2+2x3+x4=0 = equation (1)rank of system of equations = 2(1)+(2)3x1+3x2+3x4=0x4=-(x1+x2)from (1)x1+2x2+2x3-(x1+x2)=0x3 = -x2/2sol...

X1=1,X2=-1,X3=0.5,X4=0
可带入验算