如图所示,在△ABC中,AB=AC,BD,CE分别为∠ABC,∠ACB的平分线.求证:四边形EBCD是等腰梯形.

问题描述:

如图所示,在△ABC中,AB=AC,BD,CE分别为∠ABC,∠ACB的平分线.
求证:四边形EBCD是等腰梯形.

证明:∵AB=AC,∴∠ABC=∠ACB,∴∠DBC=∠BCE=12∠ABC,在△EBC与△DCB中,∵∠ABC=∠ACBBC=CB∠BCE=∠DBC,∴△EBC≌△DCB(ASA),∴BE=CD.∴AB-BE=AC-CD,即AE=AD.∴AEAB=ADAC,且∠A=∠A,∴△ABC∽△AED...
答案解析:可以先利用全等三角形的判定△EBC≌△DCB,得出BE=CD,再证明四边形EBCD是梯形,这样就得到了四边形EBCD是等腰梯形.
考试点:等腰梯形的判定;全等三角形的判定与性质.


知识点:此题主要考查学生对等腰梯形的判定的掌握情况,与此同时也考查到了全等三角形的判定方法,做题将两者结合并灵活运用有利于解此题.