倾斜角为π/4的直线交椭圆X平方/4+Y平方=1于AB两点,则线段AB中点的轨迹方程是?
问题描述:
倾斜角为π/4的直线交椭圆X平方/4+Y平方=1于AB两点,则线段AB中点的轨迹方程是?
答
y=x+k
x^2 / 4 + y^2 = 1
5x^2 + 8kx + 4k^2 - 4 = 0
x = (-4k +/- 2Math.sqrt(-k^2 + 5))/5
y = (k +/- 2Math.sqrt(-k^2 + 5))/5
A((-4k+2Math.sqrt(-k^2 + 5))/5, (k+2Math.sqrt(-k^2 + 5))/5)
B((-4k-2Math.sqrt(-k^2 + 5))/5, (k-2Math.sqrt(-k^2 + 5))/5)
中点
M (-4k, k)
轨迹方程 y=-1/4 x
然后-k^2 + 5>=0
k^2 -Math.sqrt(5) -4Math.sqrt(5) y=-1/4 x, -根号5
答
设A(x1,y1),B(x2,y2)中点坐标为((x1+x2)/2,(y1+y2)/2)因为AB在椭圆上所以满足椭圆方程x1^2/4+y1^2=1x2^2/4+y2^2=1二式相减得(x1+x2)(x1-x2)/4+(y1+y2)(y1-y2)=0又因为A、B在直线上满足y1=x1+by2=x...