已知函数f(x)={n^2(当n为奇数时);-n^2(当n为偶数时),且an=f(n)+f(n+1),则a1+a2+a3+...+a100=?为什么当n为奇数时an=a1+a3+a5+...+a99=n^2-(n+1)^2=-2n-1,而不是an=n^2+(n+1)^2an=f(n)+f(n+1) 这里用加的啊,怎么变成减的呢?

问题描述:

已知函数f(x)={n^2(当n为奇数时);-n^2(当n为偶数时),且an=f(n)+f(n+1),则a1+a2+a3+...+a100=?
为什么当n为奇数时an=a1+a3+a5+...+a99=n^2-(n+1)^2=-2n-1,而不是an=n^2+(n+1)^2
an=f(n)+f(n+1) 这里用加的啊,怎么变成减的呢?