已知函数f(x)的导数f′(x)=2x-9,且f(0)的值为整数,当x∈(n,n+1](n∈N*)时,f(x)的值为整数的个数有且只有1个,则n=( )A. 2B. 6C. 8D. 4
问题描述:
已知函数f(x)的导数f′(x)=2x-9,且f(0)的值为整数,当x∈(n,n+1](n∈N*)时,f(x)的值为整数的个数有且只有1个,则n=( )
A. 2
B. 6
C. 8
D. 4
答
知识点:本题考查导数知识的运用,考查函数解析式的运用,属于中档题.
因为f'(x)=2x-9,所以可设f(x)=x2-9x+k,则f(0)=k,依题意知k为整数,又n为正整数,所以f(n+1)及f(n)均为整数.f(x)=x2-9x+k=(x-4.5)2-4.52+k,是二次函数,开口向上,对称轴为x=4.5当x∈(4,5]时,f...
答案解析:因为f'(x)=2x-9,所以可设f(x)=x2-9x+k,则f(0)=k为整数,由于n为正整数,可得f(n+1)及f(n)均为整数,函数的对称轴为x=4.5,利用函数的最大值与最小值的差,可得结论.
考试点:进行简单的合情推理;导数的运算.
知识点:本题考查导数知识的运用,考查函数解析式的运用,属于中档题.