求f﹙x﹚=5-x+√3x-1的值域
问题描述:
求f﹙x﹚=5-x+√3x-1的值域
答
令 t=√(3x-1)
有:x=(t^2 +1)/3 (t ≥ 0)
于是:f(x)=5-(t^2 +1)/3 + t (t ≥ 0)
===> f(x)=(-t^2 +3t +14)/3 (t ≥ 0)
===> f(x)=(-t^2 +3t +14)/3 (t ≥ 0)
===> f(x)=[65/4-(t-3/2)^2 ] / 3 (t ≥ 0)
===> f(x) ≤ 65/12