已知椭圆x2a2+y2b2=1(a>b>0)右焦点为F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆的离心率的取值范围为______.

问题描述:

已知椭圆

x2
a2
+
y2
b2
=1(a>b>0)右焦点为F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆的离心率的取值范围为______.

因为在椭圆上存在点P满足线段AP的垂直平分线过点F,所以F点到P点与A点的距离相等;因为|FA|=a2c−c=b2c,|PF|∈[a-c,a+c],所以b2c∈[a-c,a+c],可得ac-c2≤b2≤ac+c2,即ac-c2≤a2-c2≤ac+c2,解得ca≤1ca≤−1或...
答案解析:首先根据点F在AP的垂直平分线上,可得|PF|=|FA|;然后求出|FA|=

b2
c
,|PF|∈[a-c,a+c],所以
b2
c
∈[a-c,a+c],从而求出椭圆的离心率的取值范围即可.
考试点:椭圆的简单性质.
知识点:本题主要考查了椭圆的基本性质的运用,属于基础题,解答此题的关键是根据题意,判断出|PF|=|FA|.