椭圆x^2/a^2+y^2/b^2=1 a>b>o 右焦点为F 其右准线与x轴的交点为A 在椭圆上存在一点P 满足线段AP的垂直平分
问题描述:
椭圆x^2/a^2+y^2/b^2=1 a>b>o 右焦点为F 其右准线与x轴的交点为A 在椭圆上存在一点P 满足线段AP的垂直平分
答
,
椭圆x^2/a^2+y^2/b^2=1 a>b>o 右焦点为F 其右准线与x轴的交点为A 在椭圆上存在一点P 满足线段AP的垂直平分
,