如图,已知一个四边形的四条边AB,BC,CD和DA的长分别是3,4,13和12,其中∠B=90°,求这个四边形的面积.

问题描述:

如图,已知一个四边形的四条边AB,BC,CD和DA的长分别是3,4,13和12,其中∠B=90°,求这个四边形的面积.

连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC=AB2+BC2=5,又∵AD=12,CD=13,∴AD2=122=144,AD2+AC2=122+52=144+25=169,∴AD2+AC2=CD2,∴△ACD为直角三角形,∠CAD...