已知,正四棱锥O-ABCD中,底面四边形ABCD为菱形 ,M为OA的中点,N为BC的中点,求证:MN平行平面OCD.
问题描述:
已知,正四棱锥O-ABCD中,底面四边形ABCD为菱形 ,M为OA的中点,N为BC的中点,求证:MN平行平面OCD.
答
正四棱锥O-ABCD中,底面四边形ABCD为菱形 ,M为OA的中点,N为BC的中点,求证:MN平行平面OCD.证明:取OD中点E,连接EM和CE∵M为OA的中点,N为BC的中点即EM为△OAD的中位线,EM//且=(1/2)ADCN=(1/2)BC又∵底面四边...