到直线x-y=0和直线2x+y=0的距离相等的动点的轨迹方程为

问题描述:

到直线x-y=0和直线2x+y=0的距离相等的动点的轨迹方程为

(x,y), Ax+By+C=0
点到直线的距离公式x=|Ax+By+C|/√(A2+B2)
设点的坐标为(x,y)
所以,d1=|x-y|/√2
d2=|2x+y|/√5
由已知得:d1=d2
∴(2x+y)^2/5=(x-y)^2/2
即x^2+6xy-y^2=0