已知抛物线C:y2=2px(p>0),焦点F到准线l的距离为2.(1)求p的值;(2)过点F作直线交抛物线于点A、B,交l于点M.若点M的纵坐标为-2,求|AB|.

问题描述:

已知抛物线C:y2=2px(p>0),焦点F到准线l的距离为2.
(1)求p的值;
(2)过点F作直线交抛物线于点A、B,交l于点M.若点M的纵坐标为-2,求|AB|.

(1)∵焦点F到准线l的距离为2,∴p=2;(2)设A(x1,y1),B(x2,y2),由(1)知,抛物线方程为y2=4x,∴焦点F的坐标(1,0),且M(-1,-2),∴直线AB的斜率为kAB=−2−1−1=1,∴直线AB的方程为y=x-1,由y2...
答案解析:(1)根据p的几何意义,即焦点F到准线l的距离是p进行求解;
(2)由(1)和题意求出焦点F和点M的坐标,代入斜率公式求出直线AB的斜率,再代入点斜式方程求出直线AB的方程,联立抛物线和直线方程,消去y得到一个关于x的二次方程,求出x1+x2的值,再代入焦点弦公式求出|AB|.
考试点:直线与圆锥曲线的综合问题;抛物线的简单性质.


知识点:本题考查直线方程、抛物线的性质,以及直线与抛物线相交时的焦点弦长问题,属中等难度题.