在正方形ABCD-A'B'C'D中,E.F.G分别是AB.BC.AA'的中点.求证:B'D垂直于平面EFG.

问题描述:

在正方形ABCD-A'B'C'D中,E.F.G分别是AB.BC.AA'的中点.求证:B'D垂直于平面EFG.

证明 连接BD ,AB'∵是正方体,E,F是AB,BC中点∴EF⊥BD∵EF⊥BB'∴EF⊥平面BDB'∴EF⊥B'D同理GE⊥AB' GE⊥AD∴GE⊥平面ADB'∴GE⊥B'D∴B'D⊥平...