求极限lim(-2)^n+3^n/(-2)^[n+1]+3^[n+1] (x→∞)

问题描述:

求极限lim(-2)^n+3^n/(-2)^[n+1]+3^[n+1] (x→∞)

分子分母同时除以3^(n+1)
原式=lim[(1/3)(-2/3)^n+1/3]/[(-2/3)^(n+1)+1]=(0+1/3)/(0+1)=1/3