已知数列{an}是公差为1的等差数列,{bn}是公比为2的等比数列,Sn,Tn分别是数列{an}和{bn}前n项和,且a6=b3,S10=T4+45 ①分别求{an},{bn}的通项公式. ②若Sn>b6,求n的范围. ③令cn=(an-2
问题描述:
已知数列{an}是公差为1的等差数列,{bn}是公比为2的等比数列,Sn,Tn分别是数列{an}和{bn}前n项和,且a6=b3,S10=T4+45
①分别求{an},{bn}的通项公式.
②若Sn>b6,求n的范围.
③令cn=(an-2)bn,求数列{cn}的前n项和Rn.
答
(1)由题意可得,a1+5=4b110a1+45=45+b1(1−24)1−2联立方程可得:a1=3,b1=2∴an=n+2,bn=2n(2)∵an=n+2,bn=2n∴Sn=n(n+5)2,b6=26=64∴n(n+5)2>64,∴n≥10,n∈N*3)∵cn=(an-2)bn=n•2n∴Rn=1•2...