设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)ex的一个极值点,则下列图象不可能为y=f(x)的图象是( ) A. B. C. D.
问题描述:
设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)ex的一个极值点,则下列图象不可能为y=f(x)的图象是( )
A.
B.
C.
D.
答
由y=f(x)ex=ex(ax2+bx+c)⇒y′=f′(x)ex+exf(x)=ex[ax2+(b+2a)x+b+c],由x=-1为函数f(x)ex的一个极值点可得,-1是方程ax2+(b+2a)x+b+c=0的一个根,所以有a-(b+2a)+b+c=0⇒c=a.法一:所以函数f(x)...