证明(sin2A+sin^2A)/(2cos2A+2sin^2A+cosA )=tanA
问题描述:
证明(sin2A+sin^2A)/(2cos2A+2sin^2A+cosA )=tanA
答
(2cos2A+2sin^2A+cosA )*tanA
=2(cosAcosA-sinAsinA+sinAsinA)*tanA+cosA*tanA
=2sinAcosA+sinA
=sin2A+sinA
原式不相等啊啊啊~~我打错题了~~~应该是证明(sin2A+sinA)/(2cos2A+2sin^2A+cosA )=tanA上面那个结果换一下形式 就是 (sin2A+sinA)/(2cos2A+2sin^2A+cosA )=tanA