证明:sin2α=2tanα/1+tan²α
问题描述:
证明:sin2α=2tanα/1+tan²α
答
由已知tanβ=sin2α/(3-cos2α) =2sinαcosα/(2+2sin α) =tanα/(1/cos α+tan α) =tanα/(1+2tan α) (1)tan(α+β)=(tanα+
答
sin2α=2sinacosa=2sinacosa/1 (这里是把1变成sina^2+cosa^2)
=2sinacosa/(sina^2+cosa^2) (同时除以cosa^2)
=2tanα/1+tan²α