设三个正数a、b、c满足(a2+b2+c2)2>2(a4+b4+c4),求证:a b c一定是某三角形三边
问题描述:
设三个正数a、b、c满足(a2+b2+c2)2>2(a4+b4+c4),求证:a b c一定是某三角形三边
答
∵(a^2+b^2+c^2)^2>2(a^4+b^4+c^4)∴a^4+b^4+c^4-2(ab)^2-2(bc)^2-2(ca)^2<0∴a^4+b^4+c^4-2(ab)^2+2(bc)^2-2(ca)^2<4(bc)^2∴(a^2-b^2-c^2)^2<4(bc)^2∴|a^2-b^2-c^2|<2bc即-2bc<a^2-b^2-c^2<2bc∴b^2-2...