过坐标原点与圆x^2+(y-2)^2=1 相切的直线斜率为_____.
问题描述:
过坐标原点与圆x^2+(y-2)^2=1 相切的直线斜率为_____.
答
过坐标原点与圆x^2+(y-2)^2=1 相切的直线为:y=kx
圆心坐标C(0,2),半径=1;切点P,CP⊥OP于P,CP=1:
OP²=OC²-CP²=2²-1²=3
OP=√3;
∠OCP+∠COP=90°
∠POx+∠COP=90°
∠OCP=∠POx
k1=OP/CP=√3/1=√3;
k2=-√3;