已知数列{An},Sn是其前n项和,且满足3An=2Sn+n,n为正整数,求证数列{An+1/2}为等比数列1、已知数列{An},Sn是其前n项和,且满足3An=2Sn+n,n为正整数(1)、求证数列{An+1/2}为等比数列;(2)、记Tn=S1+S2+S3+.+Sn,求Tn的表达式.2、已知数列{An}满足A1=1.A2=2,A(n+2)=An+A(n+1)/2,n为正整数(1)、令Bn=A(n+1)-An,证明:{Bn}是等比数列.(2)、求{An}的通项式.求第二题的答案~

问题描述:

已知数列{An},Sn是其前n项和,且满足3An=2Sn+n,n为正整数,求证数列{An+1/2}为等比数列
1、已知数列{An},Sn是其前n项和,且满足3An=2Sn+n,n为正整数
(1)、求证数列{An+1/2}为等比数列;
(2)、记Tn=S1+S2+S3+.+Sn,求Tn的表达式.
2、已知数列{An}满足A1=1.A2=2,A(n+2)=An+A(n+1)/2,n为正整数
(1)、令Bn=A(n+1)-An,证明:{Bn}是等比数列.
(2)、求{An}的通项式.
求第二题的答案~

1、(1)证明:3A(n+1)-3An=2[S(n+1)-Sn]+1=2A(n+1)+1,
化简得:A(n+1)+1/2=3(An+1/2).
∴数列{An+1/2}为等比的数列,比值为3。

(2)2Tn=∑2Sn=∑(3An- n)
=3∑An-∑n=3Sn-n(n+1)/2
=3(3An-n)/2-n(n+1)/2
=3[3(3^n/2-3/2)-n]-n(n+1)/2
...(自己化简一下,我懒得写了)
2、(1)A(n+2)=[An+A(n+1)]/2可得出
2[A(n+2)-A(n+1)]=-[A(n+1)-An]
所以Bn=A(n+1)-An是公比为-1/2的等比数列
通项公式太简单自己算了

2、

1.证明;先令n=1,则3A1=2A1+1 得A1=1
令n=n+1得3A(n+1)=2S(n+1)+(n+1)②
∵3An=2Sn+n①
由②-①得:3(A(n+1)-An)=2An+1
移项得3(A(n+1)+1/2)=5(An+1/2)
即(A(n+1)+1/2)÷(An+1/2)=5/3
∴{An+1/2}是首项为3/2,公比为5/3的等比数列
(2)Sn=A1+1/2+A2+1/2+......An+1/2-n/2
=3/2[1-(5/3)^n]/(-2/3)-n/2
=9/4×(5/3)^n-9/4-/n/2
∴Tn=45/8(5/3)^n-45/8+n(n+1)/4-9n/4
先做一题吧,累死,这么多符号

1.
证:
Sn=(3an-n)/2
Sn-1=[3a(n-1)-(n-1)]/2
an=Sn-Sn-1=[3an-3a(n-1)-1]/2
an=3a(n-1)+1
an+1/2=3a(n-1)+3/2=3[a(n-1)+1/2]
(an+1/2)/[a(n-1)+1/2]=3,为定值,因此
{An+1/2}为等比数列.
令n=1
3a1=2a1+1
a1=1
a1+1/2=3/2
Tn=S1+S2+...+Sn
=(1/2)(2S1+2S2+...+2Sn)
=(1/2)(3a1-1+3a2-2+...+3an-n)
=[-n(n+1)/4]+(3/2)(a1+a2+...+an)
=[-n(n+1)/4]+(3/2)[a1+1/2+a2+1/2+...+an+1/2-n/2]
=[-n(n+1)/4]-3n/4+(3/2)(3/2)(3^n-1)/2
=[9(3^n-1)-2n(n+4)]/8