如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y= 2 x 于点D,过D作两坐标轴的垂线DC、DE,连接OD

问题描述:

如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y= 2 x 于点D,过D作两坐标轴的垂线DC、DE,连接OD
(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证AD•BD为定值.
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
(4)在(3)中,在y轴上是否存在一点P,使△DOP是以OD为腰的等腰三角形,若存在请写出O点坐标并说明理由,若不存在也请说明理由.

(1)A(0,b),B(-b,0),则OA=OB=b
故△AOB为等腰直角三角形,∠ABO=45°
在△BED中,∠BDE=180°-∠EBD-∠BED=180°-45°-90°=45°
∠BDE=1/2∠CDE
所以AD平分∠CDE
(2)D点坐标(x,y)同时满足方程y=x+b和xy=2
AD*BD=√2OE*√2BE=2x*(b+x)=2xy=4为定值
(3)假设存在直线AB使得四边形OBCD为平行四边形,需要CD=BO=b
x=b代入方程y=x+b和xy=2,
解得y=2,b=1
所以直线AB为y=x+1
(4)联立y=x+1和xy=2,解得D(1,2),OD=√[(1-0)^2+(2-0)^2]=√5
1)OD=OP=√5,显然P(0,√5)或(0,-√5)
2)OD=DP=√5,设P(0,y)
PD=√[(1-0)^2+(2-y)^2]=√5,解得y=0(与原点重合,舍去)或y=4
综上,P(0,√5)或(0,-√5)或(0,4)