求详解若函数y=根[(kx^2)-6kx+k+8]的定义域为R,求实数k的取值范围需详解
问题描述:
求详解若函数y=根[(kx^2)-6kx+k+8]的定义域为R,求实数k的取值范围
需详解
答
设函数y1=kx^2-6kx+k+8 则即是求函数y1恒为非负的k的取值范围 (1),k=0 (2),k>0,y1=0无解,或只有一个根,求出0
答
若k=0 y=根(8) 定义域为R成立 若k不等于0 则 (kx^2)-6kx+k+8>=0在定义域为R上成立 k[(x-3)^2-8]+8>=0 若k>0 (x-3)^2>=8-8/k 只需8-8/k
答
根据题意,即为:(kx^2)-6kx+k+8>=0恒成立.
即函数y=(kx^2)-6kx+k+8恒在x轴上方,且与x轴最多有一个交点.
则Δ=(6k)^2-4*k*(k+8)0 解得,0