如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,点E为BC中点,点F为B1C1中点. (1)求证:平面A1ED⊥平面A1AEF; (2)设二面角A1-E
问题描述:
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,点E为BC中点,点F为B1C1中点.
(1)求证:平面A1ED⊥平面A1AEF;
(2)设二面角A1-ED-A的大小为α,直线AD与平面A1ED所成的角为β,求sin(α+β)的值.
答
(1)证明:∵AB=2,BC=4,∠ABC=60°,点E为BC中点,
∴△ABC为等边三角形,∠AEB=60°,
△CDE中,∠CED=30°,∴AE⊥ED,
∵AA1⊥底面ABCD,∴AA1⊥ED,
又由AE∩AA1=A,∴ED⊥平面AA1EF,
又∵ED⊂平面A1ED,
∴平面A1ED⊥平面A1AEF.
(2)∵ED⊥平面A1AEF,∴A1E⊥ED,AE⊥ED,
∴∠A1ED为二面角A1-ED-A的平面角,∴∠A1EA=α,
∴sinα=
=AA1
A1E
,cosα=2
5
5
,
5
5
过A作A1E的垂线,垂足为H,连结HD,
∵ED⊥平面A1AEF,∴ED⊥AH,
∴AH⊥平面A1ED,
∴∠ADH为直线AD与平面A1ED所成的角β,即∠ADH=β,
∴AH=
,sinβ=4
5
5
=cosα,
5
5
∴α+β=90°,
∴sin(α+β)=1.