设F1(-c,0)、F2(c,0)是椭圆x2a2+y2b2=1(a>b>0)的两个焦点,P是以F1F2为直径的圆与椭圆的一个交点,若∠PF1F2=5∠PF2F1,则椭圆的离心率为( ) A.32 B.63 C.22 D.23
问题描述:
设F1(-c,0)、F2(c,0)是椭圆
+x2 a2
=1(a>b>0)的两个焦点,P是以F1F2为直径的圆与椭圆的一个交点,若∠PF1F2=5∠PF2F1,则椭圆的离心率为( )y2 b2
A.
3
2
B.
6
3
C.
2
2
D.
2
3
答
∵P是以F1F2为直径的圆与椭圆的一个交点,∴∠F1PF2=90°∵∠PF1F2=5∠PF2F1,∴∠PF1F2=15°,∠PF2F1=75°∴|PF1|=|F1F2|sin∠PF2F1=2c•sin75°,∴|PF2|=|F1F2|sin∠PF1F2=2c•sin15°,∴2a=|PF1|+|PF2|=2c•si...