已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线与椭圆有一个交点P,且PF2⊥x轴,则此椭圆的离心率e为(  ) A.33 B.32 C.22 D.23

问题描述:

已知椭圆

x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线与椭圆有一个交点P,且PF2⊥x轴,则此椭圆的离心率e为(  )
A.
3
3

B.
3
2

C.
2
2

D.
2
3

在Rt△PF2F1中,∠PF1F2=30°,|F1F2|=2c,|PF1|=2|PF2|,
根据椭圆的定义得|PF2|=

2
3
a,|PF1|=
4
3
a,又|PF1|2-|PF2|2=|F1F2|2,即
16
9
a2-
4
9
a2=4c2
∴e=
c
a
=
3
3

故选A