如图所示,正方形ABCD边长为4,M,N分别是BC,CD上的两个动点当点M在BC边上运动时,保持AM和BM垂直.
问题描述:
如图所示,正方形ABCD边长为4,M,N分别是BC,CD上的两个动点当点M在BC边上运动时,保持AM和BM垂直.
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大?并求出最大面积
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值
Rt△ABM∽Rt△MCN可以直接用.找了很多,但看不清楚,可以的话还请写清楚些,当然,有固定的格式最好了,
答
证明:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠MAB,∴Rt△ABM∽Rt△MCN.(2)∵Rt△ABM∽Rt△MCN,∴ AB:MC=BM:CN,即4/4-...太感谢你了~~\(≧▽≦)/~~啦啦啦