y= x / (1-x)^3的单调区间、极值及其图形的拐点

问题描述:

y= x / (1-x)^3的单调区间、极值及其图形的拐点

y= x / (1-x)^3,定义域:x≠1
y' = [ (1-x)^3*1 - x * 3(1-x)^2 * (-1) ] / (1-x)^6
= (2x+1)(1-x)^2 / (1-x)^6
= (2x+1) / (x-1)^4
x∈(-∞,-1/2)时,y'<0,单调减;
x∈(-1/2,1)时,y'>0,单调增;
x∈(1,+∞)时,y'>0,单调增.
x= -1/2时,最小值 = (-1/2) / (1+1/2)^3 = -16/27
y'' = [ (x-1)^4 * 2 - (2x+1) * 4 (x-1)^3 ] / (x-1)^8 = -6(x+1) / (x-1)^5
当x=-1时,y''=0,y=-1/(1+1)^3=-1/8,拐点坐标(-1,-1/8) 函数图象在该点由上凸转变为下凹.